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The character of the loss of stability in a magnetized nonequilibrium plasma ina
bounded region is examined, The influence of thermal conductivity and nonlinear
effects are taken into account, It is shown that both magnetically soft and mag-
netically hard modes of the loss of stability can take place, With small parameter
values of the supercritical state the rise of self-oscillations is possible, The criti-
cal value of the Hall parameter corresponding to the beginning of ionization insta-
bility [1, 2] and its dependence on the boundaries, were examined using the linear
approximation in [3— 5], The spectrum for the linear problem was examined neg-
lecting thermal conductivity [3] and taking it into account 5], It was established
that the critical value of the Hall parameter is identical in the presence of bound-
aries and in the case of an infinite medium, Numerical computations of the ion-
ization instability process are given in [6, 7). The bibliography of earty workson
ionization instability can be found in the review [8],

1, Let us consider the behavior of a nonequilibrium magnetiged plasma in a bounded
region, An infinite channel extends in the direction of the y and z axes and it is bound-
ed in the direction of the x axis by nonconducting walls, separated by a distance 5. A
constant magnetic field B is directed along the z axis, It is assumed that ionization
equilibrium exists anf the effect of the induced magnetic field is neglected, If the elec-
tron temperature I considerably exceeds the heavy particle temperature 7',, then the
state of the plasma is defined by the following system of equations:

rot E =0, divij=20 1.1
I(S U Vn) k(G + UVT |+ divg = Lo — - k7ony
U——L, j4jx@=06(n,NE, q+tqxQ=—r(n )T

en
Here / is the ionization potential, U is the directional electron velocity, o and A
are the coefficients of electric and thermal conductivity, respectively, j is the electric
current density, v is the frequency of collisions between the electrons and heavy parti-
cles, 8 is the portion of energy transferred at the collision with a heavy particle, £ is
the electric field strength, Q — /v (n, T) is the Hall parameter, o is the electron
cyclotron frequency,
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Since the presence of an ionization equilibrium is assumed, the concentration of elec-
trons n depends on their temperature as is given in the Saha equation, In the absence
of ionization equilibrium, the system of equations (1,1) must be completed by the equa-
tion of ionization kinetics,

We introduce the potential @
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As a typical electron temperature 7' for a given value of j,, we take the tempera~-
ture obtained by solving the equation

8/,8kT yny (To) vo Mgy To) = Jo2/ 64 (ng, T)

We denote the values of all parameters of the medium at a given temperature by a zero
subscript (n (T,) = n,). We choose
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as characteristic values and introduce the dimensionless parameters
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Using these definitions we reduce the problem (for I/ kT > 1, 3/ 6z = 0) to the
following one:
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We introduce the formulas for the coefficients of electric and thermal conductivities,
drift velocity of electrons and collision frequency

(64)7 =1 + a0 + ;0% + a0 + 0 (6Y) (1.4
Q
T Q0 (1 -+ 2218 -+ 2356% + a,50% - O Ch))

Ut = Uy + a5 + ag,0? - O (69
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To(1 -+ Q2 (0)) on = To (1 + Q0% E(')O" -+ @440 - 0(92)

The coefficients a;; (i, j = 1, 2, ...) of the expansion (1,4) are determined by the
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dependence of the collision cross sections on the electron temperature, Hereafter only
dimensionless parameters will be used and therefore the superscript plus is omitted eve~

rywhere,

2, If the system of equations (1, 2) is linearized at the homogeneous and stationary
state (having first eliminated T'%)

bz, 4, ) =14+08,(z, 4, 1), D =Dy(z, ¥, 1), | D] <1
then the functions 6,, @, will represent the solution of the following problem :
L@y + LypBs =0, Ly@g + Lypba =0 (2.1)
zel0, 1}, ye(—o, o), >0

a2 a a a
Lu= 55+ Ly, = Qean oy T gy (2.2)
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O(af:ry, 2] == 0(83;?; ) =0, 90(0’ Y, t)meo A, y, 6 =0 (2, 3)

We shall find the solution of Egs, (2, 2) in the form
@, = ¢ (o) exp (iKy + pt), 0, = 8 (2)exp (iKy + pt) (2.4)

The characteristic equation for the eigenvalues of the problem has the form

1 1 1 1
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Here i2h,; s 4
M?&. :_:—-]--—-——----—-—::——, ]’:1,2, 3
i) = TERGA= K

where A; are the roots ot the following equation:
AM — (p — 2AK? — [ + 2ay) M + i2Qpa5h + (2.6)
K (p —f + AKY) =
The presence of the small parameter A at a higher derivative in (2,6) leads to a
type of solution for a boundary layer near the channel wall; in this case the solution in
the channel kernel depends weakly on the form of the temperature boundary conditjons,
Due to this fact and using Egs, (2, 5), (2. 6), it is possible to show that p,can be determ=
ined from the following approximate expression:
K? (pn + AK® — [)pn + 20K — [ + 2ay) + (2.7
(ITn)Xps -+ 2AK® — " + 2a1,)* — (QoKay)? =0

n=4%,2,...
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It follows from (2, 7) that for the Hall parameters exceeding the critical value
o - K, (2AK? — § 4 2a11)
+ K | asi l

we have Rep ~> 0 and the initial state is unstable,

The neutral curve (Rep = O) for an argon plasma (T, = 4 000° K, P = 1 atm)with
an addition of cesium is shown in
" n” /A’=/0"~’ ’_/ Fig, 1 we neglect the influence
:‘ / it of the magnetic field on the coeffi-
. i _— cient of thermal conductivity A™ —

| A(L+Q2), 1, =20cm, n=1)

B /m-/ (*). The minimum critical value
\ / of the Hall parameter (correspond-

7

ing to the extreme left position in

5 IR\ Fig, 1) determines the beginning of
I \ ‘r the rise of instability, It weakly de-

:l \ i pends on the parameter A and its

2 I'i value is determined mainly by the

» l values ayy, a,, f. The instability
) :!g«lmbn ; 4} region H is limited by large values

/ 2 J 7 7  of the wave number X (small wave-
lengths) as well as by small values
Fig, 1 of K (large wavelengths), The in-

stability region contracts with in-

creasing thermal conductivity (the magnetic field induction is constant), The value of

the wave number corresponding to the starting point of the rise of instability (point at

Q, min) decreases with increasing parameter A. The lower and upper branches of the

neutral curve for large values of the Hall parameter correspond to

K~1/Q+Y K~Q+1/J

The stability for large wave numbers X can be explained by the stabilizing action of
the thermal conductivity, The stability at small values of K is related to the fact that
in this case the influence of the Hall effect vanishes (the lines of electric current become
parallel), If the thermal conductivity is not taken into account, all the area on the right
of the curve «, , (Fig, 1) belongs to the instability region,

3, To solve the question of the mode (magnetically hard or soft) of the loss of stabi-
lity, it is necessary to take into account the nonlinear effects, i, e, to utilize the com-
plete system of equations (1, 2), We shall find the solution of system (1, 2) for a self-
oscillation state with boundary conditions (1, 3) in the form

D (.’L‘, Y)7 0 (.Z‘, Y)7 Y = Yy -+ Wt

expanding the functions in series with respect to the small parameter of the supercritical
state

*) Compatation of the neutral curve was performed by Iu, V, Trofimov,
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=14 Dlemg,, @ = Dl enid,, (8.1)
n=0 n=o
W:Uo—i“ZSMIWn, Q=0 e
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Instead of an expansion with respect to the small parameter of the supercritical state,
a series expansion with respect to the small amplitude can be used, as it was done in[9],
These two expansions give the same results,
Substituting expansion (3,1) in Eq, (1.2) and equating the coefficients of the same
degree in g, we obtain the following system of equations for the functions.9,and ®y:
Ly®@p + L8y = finy Lyy@n + Loa*On = fan (3.2)
Lyt = — ALy —F
The operators Ly, L,,, Ly, are determined by the expressions (2, 2) while for the func-
tions f,,, the following formulas are valid

fio = fao = 0 (3.3)
fun (@2, 052, 8,®@) = —{ay [80:Pox + 00y Doy + 05 (Doux +
(Doyy)] + Q85 (00xPoy — 8oy Pox) + 2(ay59, Oy — 1580z) 0o}
far (Do 60% eo(Do) = 1/zf"eo2 + q)0x2 + cDoy2 + W190y + (Doye(Jx -
201,00Dox — a5:880y + an (B> + 0¢,° + 0A0,) — 05, Do
fie = fu (@1, 8,00, @,00, Dby) + 2055 (@280 + @4, 80y) +
28459 002Dy — 00y Pox) Q, + 3Q, a,4000,« —3a,400200, —
a1,0,A0, - a5,0y
fog = for (@1®g, 8,0, 0,0y, 8,@1) — Yo [ 85° — 2a1,8,* Do +
ay30, (Do + @) + 30600y + 4o (204 (894 4 005" -
0,2A0,] - 0, (©g80y — Doybox) — Iéfgs-?—é A8,

The functions @,, 0, satisfy the homogeneous system of equations and its solution can
be represented in the form

D, (2, ¥) = a(p(2) XY + @* (2) eiKY) (3.4)
0o (z, y) = o (B (z) €Y + 0* (z) iKY)

The functions ¢ (), 6 (z) can be written in the form of asymptotic expansions with
respect to the small parameter ]/A (hereafter we shall use only the first terms of this
expansion, although finding subsequent terms does not present any special difficulty).
For the function ¢ there existsthe following relation:

¢ (z) = eie* sin iz + O (VY A)

To fulfil the boundary conditions for § () it is necessary totake into account higher order
derivatives and to construct the type of solution for a boundary layer at the wall, The
general solution has the form of a multiple expansion
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0(z) =0V, VA +0(A

6(&)) = "f'TZKIF {(exp icx) (mcos nx 4 ic sin nx) —
(0 =35) - oo+ 73]
Here
Q+Ka21 I{1 — (“2 + K2)l"’

¢= _f'——2a11—~2AK2 !
M= (QK |ay |/ Kyy

We note that in spite of the fact that the parameter A is much smaller than unity,
the product AK can be considerable because of a chosen K.

In (3,4) the value of & is a constant (wave amplitude) which is to be determined,
Substituting (3, 4) into the relation for f;; and f,,, we obtain a linear homogeneous
system of differential equations for the functions ¢, and 6;. The condition for the
solution of a nonhomogeneous system can be written in the form

12n/K

(fig*)exp(— iKY)dxdY = 0 (3. 5)
0 o0
fillun fady i=1,2,...,  q* (9" (2), 80" (2))

Here @,* (z), 0,* (z) is the solution of the conjugate system (Lgy* = Lyp*)
Ly*@o* (2) + Lyp*00* (2) = 0, Ly*@o* + Ly*0* =

d ; d d
Ly*=—2_—, Lp*=iKQau-taug, In*=g7—K

with the boundary conditions @,* (0) = @+ (1) =0, 8,*(0) = 0,* (1) = 0.
From the condition for the system solution for 7 = 1, it follows that W, = 0, and for
the functions @;, 0; the formulas

@, (z, Y) = o (q (2) e¥EY + @,* (2) e 2KY + @, (2)) (3.6)
0, (z, Y) = a? (8, (z) e¥KY 4 0,* (z) e%KY + 0, (z))

are valid, Here @y, 0y, P, 91‘ satisfy the following equations:

Liy*gy + Lyy'0; = f11(9% 02, ¢0), Ly + Lyp*6; = fiy (92, 02, ¢9)
G1191” + G017 = f11 (99*, 00%, 0%, 9*0)
Lyi®1™ + Goe01™ = [ (@o*, 00*, ¢B*, ¢*0)
r d dz
Ly, = lQ+‘121K — 0 g u= g
d ’
G12=——du%, G22=—AG11~—f

Substituting (3.1) and (3, 6) into the expansions for f,, fa2» we obtain the system of
equations for the functions @, and 0,. The condition for the solution of (3, 5) for
n = 2 permits the amplitude & and W to be determined, Taking only the main
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contributing terms, we can write
» _ 16AK?Y 3.7
a1
W, = [(Q+K — 0)(2AK? — f') — 2AKn?l(2y) !
X = (QK —¢)? —n? 5 =I[2AK?>—f)—2KA(QK +
K)I(AK? — )1

Here ), is a positive function of a constant sign for different values of the wave number
K and of the Hall parameter, The function % is positive for large wave numbers and

negative for — N\
KK, = ( 2A0; )

The negative sign of the function ) indicates that in this case a hard mode of the loss
of stability is present and a self-oscillatory mode exists for £y < €,. In this case it
is necessary to use the expansion 42, = ¢2, — €? and the right side of the formula
(3. 7) will be preceded by the plus sign,

The minimal critical value of the Hall parameter (., takes place in the region of
a magnetically soft mode of the loss of stability, which was proved by the experiments
[10, 11], With the Hall parameter further increasing a magnetically hard mode of the
loss of stability can occur as the neutral curve is crossed,

The author thanks A, A, Barmin and A, G, Kulikovskii for useful discussion of results,
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