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The character of the loss of stability in a magnetized nonequilibrium plasma ina 
bounded region is examined. The influence of thermal conductivity and nonlinear 

effects are taken into account. It is shown that both magnetically soft and mag- 

netically hard modes of the loss of stability can take place, With small parameter 

values of the supercritical state the rise of self-oscillations is possible. The criti- 

cal value of the Hall parameter corresponding to the beginning of ionization insta- 

bility [ 1, 21 and its dependence on the boundaries, were examined using the linear 

approximation in [3- 51. The spectrum for the linear problem was examined neg- 
lecting thermal conductivity [S] and taking it into account [5]. It was established 
that the critical value of the Hall parameter is identical in the presence of bound- 
aries and in the case of an infinite medium. Numerical computations of the ion- 

ization instability process are given in [6, 7). The bibliography of early workson 
ionization instability can be found in the review [8]. 

1. Let us consider the behavior of a nonequilibrium magnetized plasma in a bounded 

region. An infinite channel extends in the direction of the y and z axes and it is bound- 

ed in the direction of the 2 axis by nonconducting walls, separated by a distance b. A 
constant magnetic field B is directed along the z axis. It is assumed that ionization 
equilibrium exists anf the effect of the induced magnetic field is neglected. If the elec- 

tron temperature T considerably exceeds the heavy particle temperature T,, then the 
state of the plasma is defined by the following system of equations: 

rot E = 0, divj = 0 (1.1) 

u=-;, j+jxQ=a(n,T)E, q$-qxQ= -h(n, T)C7 

Here I is the ionization potential, U is the directional electron velocity, o and ?L 

are the coefficients of electric and thermal conductivity, respectively, i is the electric 
current density, v is the frequency of collisions between the electrons and heavy parti- 
cles, 6 is the portion of energy transferred at the collision with a heavy particle, E is 
the electric field strength, Q = o / v (n, T) is the Hall parameter, o is the electron 
cyclotron frequency. 
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Since the presence of an ionization equilibrium is assumed, the concentration of elec- 

trons n depends on their temperature as is given in the Saha equation. In the absence 
of ionization equi~b~um, the system of equations (1.1) must be completed by the equa- 
tion of ionization kinetics. 

We introduce the potential Q, 

am . . am 
Jx=ay, Jv=Jo-,,Y j. = const 

As a typical electron temperature T, for a given value of jr , we take 

ture obtained by solving the equation 

Sl,GkTon, (To) Y,, (no, T,) = io2 / co (no, TO) 

the tempera- 

We denote the values of all parameters of the medium at a given temperature by a zero 
subscript (n (To) f n0). We choose 

1, = b, z, = -y , u& 
* 

as characteristic values and introduce the dimensionless parameters 

p=zgk, 0 n - no 
z=-) 

no 
CD+ = + 

t 6 
0 =-7 

60 

h%&, vt=+ 

Using these definitions we reduce the problem (for I / kT, > 1, 8 / & = 0) to the 

following one : 
a 

I 

1 aat+ --- 
ax+ O+ a++ + s-4g]+$T[Y$+~gG]+ 

a 52 ai 0 -----_--^ 
ay+ 6+ a+ a+ 

ae -- 
at+ u+y&-V++ v+T+ = -L__F + & 7 

aa+ 64 Y, 4 -_ am+ (1, Y, if 

aY+ eY+ =o, efO,y,q=e (i,?J,t)=O 

(1.2) 

(1.3) 

We introduce the formulas for the coefficients of electric and thermal conductivities , 

drift velocity of electrons and collision frequency 

(0+)-x = 1 + a,,0 + a,,82 + a,,es + 0 (e4) (1.4) 
8 

- = Q, (1 + a28 + a282 + ~~83 + 0 (e*)) 
b+ 

U+ = u, + a,,8 + a,,82 + 0 (88) 

MB0 

~~ (1 + Qo2 (8)) E no -= 
To(l + Q$) 2 + a48 + 0P2> 

The coefficients aij (i, j = 1, 2, v-e) f h o t e ex p ansion (1.4) are determined by the 
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dependence of the collision cross sections on the electron temperature, Hereafter only 
dimensionless parameters will be used and therefore the superscript plus is omitted eve- 

rywhere, 

2, If the system of equations (1.2) is linearized at the homogeneous and stationary 
state (having first eliminated T+) 

et4 Y, a = 1 + 8, (x, j,i, t), @ = @, k Y, 0, I@, 1 < 1 

then the functions e,, cDD, will represent the solution of the following problem : 

~,,a + L,,e, = 0, L,P, + L,,e, = 0 (2.1) 

J:E co, 41, Y Ei(- 00, m), t>O 

Lll = g+-&* 
a a 

Lz = Q&X ay- %I~ @.2) 

J&=2&7 L,,=-hL+&lJ+~' 

A = i~~*~~~~~~~~~ 2, f’ = a11 --$+- 

6mltQ Y, t) = ma (1, Y. Q 
a!, 3.Y 

= 0, e. (0, Y, t) = e. (1, gy, t) = 0 (2.3) 

We shall find the solution of Eqs. (2.2) in the form 

@, = CP (x0) ex~ tide -+ ~9, e. = 8 (+XP 00 + Ptj 

The characteristic equation for the eigenvalues of the problem has the form 

(2.4) 

Here i2hj 
%@J = f’+Q$z_Xz) ’ i = 1, 2, 3, 4 

where Aj are the roots ot the following equation: 

ML4 - (p - UK2 - f’ + 2a,,)h2 + ~2~~~=~~ -i- 
K2(p --I' + AK%) = 0 

(2.6) 

The presence of the small parameter A at a higher derivative in (2.6) leads to a 
type of solution for a boundary layer near the channel wall; in this case the solution in 
the channel kernel depends weakly on the form of the temperature boundary conditions. 

Due to this fact and using Eqs. (2.5). (2.6), it is possible to show that p,can be determ- 
ined from the following approximate expression: 

K2(p, i_ AK2 - f')(pn i- 2hK2 - f’ + 2%) + (2.3 
(IIn)2(p, + 2AK2 - f’ + 2aJ2 - (&,Ka,J2 = 0 

m=i,2,... 
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It follows from (2.7) that for the Hall parameters exceeding the critical value 

sz 
+ 

= K, (2AK2 - f’ + 2~11) 

K I ml 1 

we have Rep > 0 and the initial state is unstable. 

The neutral curve (Rep = 0) for an argon plasma (T, = 4 000” K, P = 1 atm) with 

Fig. 1 

an addition of cesium is shown in 

Fig. 1 we neglect the influence 

of the magnetic field on the coeffi- 

cient of thermal conductivity A.’ = 

A (1 + Q+2j, 1, = 20 cm, n = 1) 
( * ). The minimum critical value 

of the Hall parameter (correspond- 
ing to the extreme left position in 

Fig. 1) determines the beginning of 

the rise of instability. It weakly de- 
peno; on the parameter A and its 

value is determined mainly by the 
values all, a12, f’. The instability 

region H is limited by largevalues 

of the wave number K (small wave- 
lengths) as well as by small values 
of K (large wavelengths). The in- 

stability region contracts with in- 
creasing thermal conductivity (the magnetic field induction is constant). The value of 

the wave number corresponding to the starting point of the rise of instability (point at 
8 +minj decreases with increasing parameter A. The lower and upper branches of the 

neutral curve for largevalues of the Hall parameter correspond to 

K.-iIQ+, K - Q2,‘/4 

The stability for large wave numbers K can be explained by the stabilizing actionof 

the thermal conductivity, The stability at small values of K is related to the fact that 
in this case the influence of the Hall effect vanishes (the lines of electric current become 

pnrallel). If the thermal conductivity is not taken into account, all the area on the right 
of the curve n, IJ (Fig. 1) belongs to the instability region. 

3. To solve the question of the mode (magnetically hard or soft) of the loss of stabi- 
lity, it is necessary to take into account the nonlinear effects, i.e. to utilize the com- 
plete system of equations (1.2). We shall find the solution of system (1.2) for a self- 
oscillation state with boundary conditions (1.3) in the form 

@ (5, Y), 0 (5, Y), y=y+wt 

expanding the functions in series with respect to the small parameter of the supercritical 
state 

*) Computation of the neutral curve was performed by Iu. V. Trofimov. 
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cl = 1 + 2 &n+lee, Q, = 2 E”flOn (3.1) 
n=o n=O 

w = UO + 2 P+lW,, ST2 = Q+ + &2 
7X=1 

Instead of an expansion with respect to the small parameter of the supercritical state, 

a series expansion with respect to the small amplitude can be used, as it was done in [9]. 

These two expansions give the same results. 

Substituting expansion (3.1) in Eq. (1.2) and equating the coefficients of the same 
degree in E, we obtain the following system of equations for the functions,e,and @,: 

Ldal + L,,e, = fm, L,@?,, + Lm+en = f2n (3.2) 

L,,f = -AL,, - f’ 

The operators Lll, L12, L,, are determined by the expressions (2.2) while for the func- 
tions f,, the folIotiing formulas are valid 

fl0 = f20 = 0 (3.3) 

fll (@02, eo2, eo@o) = -h [e,,m,, + cog@,, + e, (axx + 

CD,,,)] + ~+a,, (eoxmoy - e,,@,,) + 2b,,Q+ e,, - a12eox) eo> 

fzl (@,2, eo5 eoDo) = v2fmeo2 + mox2 + moy2 + w,e,, + @OyeOr - 

2a,,e,m,,, - a,,eoeoy + a41 (e,,2 + eoy2 + &4eo) - ~oy~ox 

f12 = fll w,~,,, he,, @,,eo7 moeI) + 2a,, (aoreox + @oueou) i- 

2a2,eo (e,,~ov - eoymox) Q+ + 3Q+a,,eo2eo. --3heo2eOy - 

a12(3oA@o + a,,%~, 

f,, = fzl plmo, e,e,, e,Q,,, e,q) - lh f”’ 8,s - 2a,2e02@Or + 

a,,eo (Qo2” + moy2) + a32e02eoy + a42 [2eO (eox2 i- eOU2) t- 

602L\60i -!- 80 (@day - (Doveox> - & heO 

The functions Do, 8, satisfy the homogeneous system of equations and its solution can 
be represented in’ the form 

@o (57 Y) = a (cp (3~) eiKY -+ ‘p* (x) e-iKY) (3.4) 

00 (57 y) = a (e (x) &KY + e* (x) e-iKY) 

The functions cp (z), 8 (2) can be-written in the form of asymptotic expansions with 
respect to the small parameter l/h (hereafter we shall use only the first terms of this 
expansion, although finding subsequent terms does not present any special difficulty). 
For the function cp there exists the following relation: 

cp (5) = eicr sin n2 + 0 (j&T) 

To fulfil the boundary conditions for 0 (z) it is necessary to take into account higher order 
derivatives and to construct the type of solution for a boundary layer at the wall. The 
general solution has the form of a multiple expansion 
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0 (5) = e(l) (5, I/K) + 0 (Jhi) 
ep) = z f, 2AK, {(erp icz) (z cos xx + ic sin nz) - 

K exp - +i$) + exp (ic + 2-$&)]} 

Here 
B+Kau 

c= - 
f'-2an -22hK2 ' 

K1 = (3%" + Icy'* 

h, = (Q+K 1 a,, I / &)': 

We note that in spite of the fact that the parameter A is much smaller than unity, 

the product AK can be considerable because of a chosen K. 
In (3.4) the value of a is a constant (wave amplitude) which is to be determined. 

Substituting (3.4) into the relation for fll and fsl, we obtain a linear homogeneous 
system of differential equations for the functions @i and 8,. The condition for the 
solution of a nonhomogeneous system can be written in the form 

12x/K 

s s 
(fig*) exp (- iKY) dx dY = 0 (3.5) 

i=l, 2,. . ., 4* bh+ (47 00+ (4 

Here ‘pO+ (x), Cl,,+ (2) is the solution of the conjugate system (Las+ = J?&*) 

Lri*(P,+ (z) + -&,*e,+ (2) = 0, &,*cpll+ + J522*eo+ = 0 

Lzl* = - 2 $ , L1,* = iKQ+azl -t_ all &, Lll* = & - K2 

with the boundary conditions ‘p,,+ (0) = 'p,,+ (1) = 0, O,+ (0) = &,+ (1) = 0. 
From the condition for the system solution for n = ‘i , it follows that Wl = 0, and for 
the functions @i, 8, the formulas 

01 (x3 Y) = a2 (cpl (x) egiKY + rp,* (x) e-BiKY + ‘pl- (2)) (3.6) 

8, (5, y) = CC (e, (x) eaiKY + e,* (5) e-2iKY + 0,- (cc)) 

are valid. Here ‘Pi, 8i, ‘pi-, 8,- satisfy the following equations: 

~29, + L1s’el = fll (cpaleal qe), L,,cP~ + L2s*el = fal (~a, 82, cpe) 

%K -t G&i = fll (vP’P*~ ee*, (PO*, rP*e) 

L21cp1- + G22@1- = fzl h*, ee*, qe*, q*e) 

L12’ = iQ+a21K - all -& , Gll = -& 

G12 = - all & , G,, -= - AGIl- f' 

Substituting (3.1) and (3.6) into the expansions for f12, fss, we obtain the system of 
equations for the functions CD2 and 8,. The condition for the solution of (3.5) for 
n = 2 permits the amplitude a and w to be determined. Taking only the main 
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contributing terms, we can write 

o2 - 16AKZX 
andZ+Xr 

(3.7) 

w, = [(Q,K - c)(2AK2 - f’) - 2hKn"l(2~,)-' 

x1 = (S2,K - c)" - 3x2, x = [(2hK,2 - f') - 2K,h (Q+K + 

KJl(AK2 - f')-1 
Here x1 is a positive function of a constant sign for different values of the wave number 
K and of the Hall parameter. The function x is positive for large wave numbers and 

negative for 
K<K+== $&” 

i ‘i + 
The negative sign of the function X indicates that in this case a hard mode of the loss 

of stability is present and a self-oscillatory mode exists for 62, < Q+. In this case it 
is necessary to use the expansion $1, = 61, - E’ and the right side of the formula 

(3.7) will be preceded by the plus sign. 
The minimal critical value of theHal parameter Q+mrn takes place in the regionof 

a magnetically soft mode of the loss of stability, which was proved by the experiments 

[lo, 111. With the Hall parameter further increasing a magnetically hard mode of the 

loss of stability can occur as the neutral curve is crossed. 
The author thanks A. A. Barmin and A. G. Kulikovskii for useful discussion of results. 
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